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Abstract

This paper developed a kinetic model for the polycondensation of ABg type monomers with a multifunctional core (RBf), giving the
expressions of the molecular weight distribution function and average molecular weights of the resulting hyperbranched polymers. During
the polycondensation bothg andf markedly influence on the width of the molecular weight distribution of the products. When the reaction
approaches completion, the molecular weight distribution of the resultant polymers is found to broaden with increasingg, and become
narrower with increasingf. Hence the effect of increasingg on the polydispersity index can be offset by increasingf. q 2000 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Since Webster et al. [1] first reported the preparation of
hyperbranched polyarylenes a decade ago, varieties of
hyperbranched polymers have been synthesized via the
polycondensation of AB2 type monomers [2–17]. Interest-
ingly, Flory [18,19] had theoretically dealt with the poly-
condensation of ABg type monomers by means of statistics
many years before the synthesis of the hyperbranched poly-
arylenes. Recently, the author of this work and co-workers
[20,21] pointed out that the molecular weight distribution of
the hyperbranched polymers resulting from the polyconden-
sation of an AB2 type monomer is extremely wide, and it
becomes narrower if a small amount of multifunctional core
molecules is added into the reaction system [22]. Similarly,
the molecular weight distribution of star-shaped polymers
generated from polycondensation systems of AB type
monomers in the presence of multifunctional core moieties
(RBf) becomes narrower with increasingf [23,24].
Apparently, if an ABg �g . 2� type monomer is used
in a polycondensation, there will be more functional end
groups in the resulting polymers, which is attractive for
polymer chemists. 2,4,6-tribromo phenol is an example
of an AB3 type of monomer [25], which can be poly-

merized with 1 equivalent of KOH and a catalytic
amount of K3Fe(CN)6. The reaction scheme [26] is shown
in Scheme 1. Recently Fre´chet and coworker [27] have
reported AB3, AB4 and AB6 types of monomer for the
synthesis of hyperbranched poly(siloxysilanes). It seems
necessary to develop a kinetic model for the polycondensa-
tion of ABg type monomers in the presence of a core
moiety, RBf. This paper is devoted to the theoretical aspect
of the reaction, and the experimental data will be reported
elsewhere.

2. Kinetic model

Some authors [28,29] have concluded that cyclization is
negligible in the polycondensation of ABg monomers.
Therefore, this work takes no account of internal cyclization.
In the polycondensation system of an ABg type monomer with
a multifunctional core moiety, RBf, there are various species.
Let P�0�i denote the hyperbranched species withi monomeric
units and without the core, andP�l�i represent the hyper-
branched species withi monomeric units and a residual core
in which l of thef B groups have reacted. As an example, the
various species resulting from the polycondensation of AB3

type monomer with a multifunctional core, RB4, are shown in
the plots of architecture.
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If the reactivities of all the functional groups are equal,
the set of kinetic differential equations adapted to the reac-
tion system under consideration reads:

d�RBf �
dt

� 2fk�RBf �
X∞
i�1

P�0�i �1�

dP�0�i

dt
� k

2

Xi 2 1

j�1

{ � j�g 2 1�1 1�P�0�j P�0�i2j

1 ��i 2 j��g 2 1�1 1�P�0�i2jP
�0�
j }

2 k{ �i�g 2 1�1 1�P�0�i

X∞
j�1

P�0�j

1 P�0�i

X∞
j�1

�j�g 2 1�1 1�P�0�j } 2 f kP�0�i �RBf �

2 kP�0�i

Xf

l�1

X∞
j�l

�j�g 2 1�1 f �P�l�j

� k
2

Xi 2 1

j�1

�i�g 2 1�1 2�P�0�j P�0�i2j 2 k{ �i�g 2 1�

1 2�P�0�i

X∞
j�1

P�0�j 1 P�0�i

X∞
j�1

j�g 2 1�P�0�j } 2 f kP�0�i �RBf �

2 kP�0�i

Xf

l�1

X∞
j�l

�j�g 2 1�1 f �P�l�j �2�

dP�1�i

dt
� f k�RBf �P�0�i 1 k

Xi 2 1

j�1

�j�g 2 1�1 1�P�1�j P�0�i2j
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dP�l�i

dt
� �f 2 l 1 1�k

Xi 2 1

j�l 2 1

P�l21�
j P�0�i2j 1 k

Xi 2 1

j�l

�j�g 2 1�

1 l�P�l�j P�0�i2j 2 k�i�g 2 1�1 f �P�l�i

X∞
j�1

P�0�j

l � 2;3;…; f (4)

The initial conditions of Eqs. (1)–(4) are:

�RBf �ut�0 � R0

P�0�i ut�0 � di;1M0

P�l�i ut�0 � 0 l � 1;2;…; f

whereR0 andM0 are the initial concentrations of the core
moiety and the ABg type monomer, respectively;d i,1 is the
Kronecker symbol. The constraint conditions can be

written as:

�RBf �1
Xf

l�1

X∞
i�l

P�l�i � R0 �5�

X∞
i�1

iP�0�i 1
Xf

l�1

X∞
i�l

iP�l�i � M0 �6�

Because there is an A group only in each of the species
without the residual core (i.e.P�0�i �; the conversion of A
groups is defined by:

a �
M0 2

X∞
i�1

P�0�i

M0
�7�

It results in

X∞
i�1

P�0�i � M0�1 2 a� �8�
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Differentiating both sides of Eq. (8), we got:

d
X∞
i�1

P�0�i

dt
� 2M0

da
dt

�9�

Summing up the left and the right sides of Eq. (2), respec-
tively, over the indexi, one finds:

d
X∞
i�1

P�0�i

dt
� 2

M2
0

r
k�1 2 a��1 2 ra� �10�

where

r � 1
g 1 fl

�11�

andl is the ratio ofR0 to M0. Comparing Eq. (9) with Eq.
(10), we have

da
dt
� M0

r
k�1 2 a��1 2 ra� �12�

If Eqs. (1)–(4) are divided by Eq. (12) and using the
constraint conditions (Eqs. (5) and (6)), we obtain

d�RBf �
da

� 2
f �RBf �

g 1 fl 2 a
�13�

dP�0�i

da
� r

M0�1 2 a��1 2 ra� ×
(

i�g 2 1�1 2
2

Xi 2 1

j�1

P�0�j P�0�i2j

2 M0P�0�i { �i�g 2 1�1 2��1 2 a�1 g 2 1 1 fl}

)
�14�

dP�1�i

da
� r

M0�1 2 a��1 2 ra� { f �RBf �P�0�i 1
Xi 2 1

j�1

�j�g 2 1�

1 1�P�1�j P�0�i2j 2 �i�g 2 1�1 f �P�1�i

X∞
j�1

P�0�j }

�15�

dP�l�i

da
� r

M0�1 2 a��1 2 ra� × { � f 2 l 1 1�
Xi 2 1

j�l 2 1

P�l21�
j P�0�i2j

1
Xi 2 1

j�l

�j�g 2 1�1 l�P�l�j P�0�i2j 2 �i�g 2 1�

1 f �P�l�i

X∞
j�1

P�0�j }

l � 2;3;…; f �16�

Eqs. (13)–(16) can be solved rigorously.

3. Molecular parameters

After a laborious derivation, we can find the solutions of
Eqs. (13)–(16):

�RBf � � R0�1 2 ra� f �17�

P�0�i �
M0

i

gi

i 2 1

 !
�1 2 a��ra�i21�1 2 ra�i�g21�11 �18�

P�1�i �
R0f

i

gi

i 2 1

 !
�ra�i�1 2 ra�i�g21�1f �19�

P�l�i �
R0l
i

f

l

 !
gi

i 2 l

 !
�ra�i�1 2 ra�i�g21�1f

l � 2;3;…; f

�20�

The details of derivation of Eqs. (18)–(20) are given in
Appendices A–C. Eq. (18) has been reported by Flory
[11] in 1952.

The molecular weight distribution function of the total
polymers generated from the polycondensation of ABg
type monomers in the presence of a multifunctional core
moiety reads:

Pi �
Xf

l�0

P�l�i �21�

The statistical moments of various species are taken into
account below. Besides Eq. (8) we can find the expressions
of other moments ofP�0�i :X

i

iP�0�i � M0
1 2 a

1 2 gra
�22�

X
i

i2P�0�i � M0
�1 2 a��1 2 g�ra�2�
�1 2 gra�3 �23�

The derivation procedures of Eqs. (22) and (23) are indi-
cated in Appendix D. Substituting Eq. (17) into Eq. (5), one
gains:X
l;i

P�l�i � R0�1 2 �1 2 ra� f � �24�

where the double summation
P

l;i denotes
Pf

l�1

P∞
i�l .

Further treatment gives:X
l;i

iP�l�i �
f R0ra

1 2 gra
�25�

X
l;i

i2P�l�i �
f R0ra

�1 2 gra�3 �1 1 �f 2 1�ra 2 gf�ra�2� �26�

Appendix E shows the derivation of Eqs. (25) and (26).
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Consequently, various moments of the total products read:X
i

Pi � M0�1 2 a�1 R0�1 2 �1 2 ra� f � �27�

X
i

iPi � M0 �60�

X
i

i2Pi � M0�1 2 a� 1 2 g�ra�2
�1 2 gra�3

1 R0
fra

�1 2 gra�3 �1 1 � f 2 1�ra 2 gf�ra�2� �28�

The number- and the weight-average degrees of polymeri-
zation can be expressed as:

Pn � 1

1 2 a 1 l�1 2 �1 2 ra� f � �29�

Pw � �1 2 a� 1 2 g�ra�2
�1 2 gra�3 1

lfra

�1 2 gra�3 �1 1 � f 2 1�ra

2 gf�ra�2� �30�

The polydispersity index is defined by:

D � Pw

Pn
�31�

Finally, we can predict the evolution of the molecular
weight distribution and its averages of the resulting
hyperbranched polymers during the polycondensation of
ABg type monomers with a core moiety in accordance
with the expressions given above.

4. Numerical results and discussion

It is necessary to define the normalized number-, weight-,
and Z-distribution functions of various hyperbranched
species and the total polymers formed, which are:

N�l; i� � P�l�iX∞
i�1

Pi

; W�l; i� � iP�l�iX∞
i�1

iPi

;

Z�l; i� � i2P�l�iX∞
i�1

i2Pi

; (32)
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Fig. 1. Weight-distributions curves of hyperbranched polymers formed in
polycondensation systems of ABg type monomers without core moiety,
a � 0:99;1 : g� 2; 2 : g� 4; 3 : g� 6; 4 : g� 10:
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Fig. 2. Z-distributions curves of hyperbranched polymers formed in poly-
condensation systems of ABg type monomers without core moiety, other
conditions are identical in Fig. 1.
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Fig. 3. Weight-distributions curves of hyperbranched polymers formed in
polycondensation systems of ABg type monomers with a small amount core
molecules,l � 0:01; a � 0:99; f � 3; 1 : g� 2;2 : g� 4; 3 : g� 6; 4 :

g� 10:

100 101 102 103 104 1050

1

2

3

4

3

2

1

Z i
x1

04

i

Fig. 4. Z-distributions curves of hyperbranched polymers formed in poly-
condensation systems of ABg type monomers with a small amount core
molecules, other conditions are identical in Fig. 3.



and

N�i� � PiX∞
i�1

Pi

; W�i� � iPiX∞
i�1

iPi

; Z�i� � i2PiX∞
i�1

i2Pi

;

�33�
The weight- and theZ-distribution curves of hyperbranched
polymers generated from ABg type monomers without core
moiety are given in Figs. 1 and 2, respectively. It can be seen
that the molecular weight distribution of the hyperbranched
polymers without core becomes wider with increasingg (the
number of B groups in the monomer). Figs. 3 and 4, respec-
tively, show the weight- and theZ-distribution curves of the
hyperbranched polymers with a core moiety (RB3). The
same conclusion as aforementioned can be reached from
the plots of the weight- and theZ-distribution of the hyper-
branched polymers with a core. Figs. 5 and 6 show the
weight- and theZ-distribution curves of hyperbranched
polymers generated from the AB4 type monomer with
various core moieties. The molecular weight distribution
becomes narrower with increasing the functionality of the

core (f). During the polycondensation of ABg type mono-
mers in the presence of a multifunctional core, the variation
of the polydispersity index of the resulting hyperbranched
polymers with the conversion of A groups is given in Figs. 7
and 8. It is evident that the greater theg, the broader the
molecular weight distribution of the hyperbranched poly-
mers, and the greater thef, the narrower the molecular
weight distribution of the hyperbranched polymers. These
tendencies are more obvious in Figs. 9 and 10, which show
the dependencies of the polydispersity index ong and f
when the reaction approaches completion. At the end of
the polycondensation, i.e. all A groups being exhausted,
the polydispersity index of the products monotonously
increases with increasingg, and decreases with increasing
f. Finally, we come to the conclusion: if an ABg�g . 2�
type monomer is used in the polycondensation, the resultant
hyperbranched polymers will have more functional end
groups and possess wider molecular weight distribution
than those generated from AB2 type monomer, however,
the disadvantage of broadening the molecular weight distri-
bution can be offsetted by the presence of a multifunctional
core moiety with a suitable functionality.
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Fig. 5. Weight-distributions curves of hyperbranched polymers generated
from the AB4 type monomer in the presence of various core moieties
respectively,l � 0:01; a � 0:99;0 : f � 0; 1 : f � 1;2 : f � 2; 3 : f �
4; 4 : f � 6:
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Fig. 6. Z-distributions curves of hyperbranched polymers generated from
the AB4 type monomer in the presence of various core moieties respec-
tively, other conditions are identical in Fig. 5.

0.5 0.6 0.7 0.8 0.9 1.0
0

40

80

120

160

4

3

2

1

D

α

Fig. 7. The dependence of the polydispersity index ong and the conversion
of A groups,l � 0:01; f � 4;1 : g� 2; 2 : g� 4; 3 : g� 6; 4 : g� 8:
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Fig. 8. The dependence of the polydispersity index onf and the conversion
of A groups,l � 0:01; g� 4; 1 : f � 2; 2 : f � 4;3 : f � 6; 4 : f � 8; 5 :
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Appendix A

Eq. (14) can be written as:

dP�0�i

da
� 2

r{ �i�g 2 1�1 2��1 2 a�1 g 2 1 1 fl}
�1 2 a��1 2 ra� P�0�i

1
r�i�g 2 1�1 2�

2M0�1 2 a��1 2 ra�
Xi 2 1

j�1

P�0�j P�0�i2j

�A1�
The homogeneous equation corresponding to Eq. (A1) is

dP�0�i

da
� 2

r{ �i�g 2 1�1 2��1 2 a�1 g 2 1 1 fl�
�1 2 a��1 2 ra� P�0�i

�A2�
The solution of Eq. (A2) is

P�0�i � Ci�1 2 ra�i�g21�11�1 2 a� �A3�

whereCi is a constant. Suppose the solution of Eq. (A1) to
be:

P�0�i � Ci�a��1 2 ra�i�g21�11�1 2 a� �A4�
whereCi(a) is a function to be determined. Substituting Eq.
(A4) into Eq. (A1), we obtain:

dCi�a�
da

� �i�g 2 1�1 2�r
2M0

Xi 2 1

j�1

Cj�a�Ci2j�a� �A5�

Let

Ci�a� � M0Qi�ra�i21 �A6�
and substituting Eq. (A6) into Eq. (A5), we have

Qi � i�g 2 1�1 2
2�i 2 1�

Xi 2 1

j�1

QjQi2j �A7�

whereQi is a constant, which is independent ofa . From one
of the initial conditions, i.e.P�0�1 ut�0 � M0, one gains:

Q1 � 1 �A8�
Then, it can be derived that

Qi � �gi�!
i!�i�g 2 1�1 1�! �A9�

and the solution of Eq. (A1) is

P�0�i �
�gi�!

i!�i�g 2 1�1 1�! M0�ra�i21�1 2 a��1 2 ra�i�g21�11

�A10�

Appendix B

Combining Eq. (15) with Eq. (A10), we have

dP�1�i

da
� 2

r�i�g 2 1�1 f �
M0�1 2 ra� P�1�i

1
�gi�!

i!�i�g 2 1�1 1�! f R0r�ra�i21�1 2 ra�i�g21�1f

1 r
Xi 2 1

j�1

�j�g 2 1�

1 1� �g�i 2 j��!
�i 2 j�!��i 2 j��g 2 1�1 1�! �ra�

i2j21�1

2 ra��i2j��g21�P�1�j �B1�
The corresponding homogeneous equation of Eq. (B1)
reads:

dP�1�i

da
� 2

r�i�g 2 1�1 f �
1 2 ra

P�1�i �B2�
which results in

P�1�i � Ci�1 2 ra�i�g21�1f �B3�
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Fig. 9. Relationship between the polydispersity index andg, l � 0:01; a �
1; B: f � 2; V: f � 4; O:f � 6; P: f � 10:
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Fig. 10. Relationship between the polydispersity index andf, l � 0:01; a �
1; B: g� 2; X: g� 4; O: g� 6; P: g� 8; V: g� 10:



whereCi is an integration constant. Supposing the solution
of Eq. (B1) is

P�1�i � Ci�a��1 2 ra�i�g21�1f �B4�
whereCi(a ) is a function to be determined. Substituting Eq.
(B4) into Eq. (B1), we have:

dCi�a�
da

� �gi�!
i!�i�g 2 1�1 1�! fR0r�ra�i21 1 r

Xi 2 1

j�1

�j�g 2 1�

1 1� �g�i 2 j��!
�i 2 j�!��i 2 j��g 2 1�1 1�! Cj�a��ra�i2j21

�B5�
Similar to Eq. (A6), let

Ci�a� � �ra�i fR0Qi �B6�
then we find:

iQi � �gi�!
i!�i�g 2 1�1 1�! 1

Xi 2 1

j�1

�j�g 2 1�

1 1� �g�i 2 j��!
�i 2 j�!��i 2 j��g 2 1�1 1�! Qj �B7�

which leads to:

Qi � �gi�!
i!�i�g 2 1�1 1�! �B8�

Subsequently we gain:

P�1�i �
�gi�!

i!�i�g 2 1�1 1�! fR0�ra�i�1 2 ra�i�g21�1f �B9�

Appendix C

Similar to the derivation of Eq. (B9), we have:

P�2�i � R0f �f 2 1� �i 2 1��gi�!
i!�i�g 2 1�1 2�! �ra�

i�1 2 ra�i�g21�1f

�C1�

P�3�i � R0f � f 2 1�� f 2 2� �i 2 1�!�gi�!
2�i 2 3�!i!�i�g 2 1�1 3�! �ra�

i�1

2 ra�i�g21�1f

�C2�

P�4�i � R0f �f 2 1��f 2 2��f

2 3� �i 2 1�!�gi�!
3!�i 2 4�!i!�i�g 2 1�1 4�! �ra�

i�1 2 ra�i�g21�1f

�C3�

By induction, we finally get:

P�l�i � R0
f !�gi�!

i�f 2 l�!�l 2 1�!�i�g 2 1�1 l�!�i 2 l�! �ra�
i

× �1 2 ra�i�g21�1f �C4�

Appendix D

From Eq. (18) we haveX∞
i�1

P�0�i � M0�1 2 a� 1 2 ra
ra

X∞
i�1

�gi�!
i!�i�g 2 1�1 1�!

× �ra�1 2 ra�g21�i �D1�
Comparing Eq. (D1) with Eq. (8), we find:X∞
i�1

�gi�!
i!�i�g 2 1�1 1�! �ra�1 2 ra�g21�i � ra

1 2 ra
�D2�

Putting

y� ra�1 2 ra�g21 �D3�
We further get from Eq. (D2):X∞
i�1

i
�gi�!

i!�i�g 2 1�1 1�! yi � y
d
dy

X∞
i�1

�gi�!
i!�i�g 2 1�1 1�! yi

� ra
�1 2 ra��1 2 gra� �D4�

andX∞
i�1

i2
�2i�!

i!�i 1 1�! yi � y
d
dy

X∞
i�1

i
�gi�!

i!�i�g 2 1�1 1�! yi

� ra�1 2 g�ra�2�
�1 2 ra��1 2 gra�3 �D5�

As the results we obtain:X
i

iP�0�i � M0
1 2 a

1 2 gra
�D6�

X
i

i2P�0�i � M0
�1 2 a��1 2 g�ra�2�
�1 2 gra�3 �D7�

Appendix E

Substituting Eq. (17) into Eq. (5), one gainsX
l;i

P�l�i � R0�1 2 �1 2 ra� f � �E1�

On the contrary, from Eq. (20), we can write:X
l;i

P�l�i � �1 2 ra� f
X
l;i

Cl;iy
i �E2�
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where

Cl;i � R0 f !�gi�!
i� f 2 l�!�l 2 1�!�i�g 2 1�1 l �!�i 2 l�! �E3�

Comparison of Eq. (E1) with Eq. (E2) results inX
l;i

Cl;iy
i � R0

1
�1 2 ra� f 2 1

� �
�E4�

Furthermore we can derive:X
l;i

iCl;iy
i � y

d
dy

X
l;i

Cl;iy
i � fR0ra

�1 2 gra��1 2 ra� f �E5�

X
l;i

i2Cl;iy
i � y

d
dy

X
l;i

iCl;iy
i

� fR0ra�1 1 � f 2 1�ra 2 gf�ra�2�
�1 2 gra�3�1 2 ra� f �E6�

Therefore we haveX
l;i

iP�l�i �
fR0ra

1 2 gra
�E7�

X
l;i

i2P�l�i �
fR0ra

�1 2 gra�3 �1 1 � f 2 1�ra 2 gf�ra�2� �E8�
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